Bonsoir, je souhaite une réponse rapide car en effet je fait un peu mon devoir à la dernière minute. J'ai un devoir maison présentant un problème qui est le sui
Mathématiques
genkisr3
Question
Bonsoir, je souhaite une réponse rapide car en effet je fait un peu mon devoir à la dernière minute.
J'ai un devoir maison présentant un problème qui est le suivant:
Si je prends le carré d'un nombre, alors il est toujours supérieur ou égal à son double moins 1
Emile pense que cet proposition est fausse et qu'elle le demontrera par un contre-exemple. Trouvez un contre exemple ou alors justifier pourquoi un contre-exemple est impossible à trouver ?
J'ai pour le moment tenté quelque chose:
J'ai énoncé une fonction: x²>2x-1
Puis j'ai développé x²-2x>-1
et factorisé x(x-2)>-1 mais c'est là que je bloque je n'arrive pas à trouver une autre façon de résoudre ce problème, merci de l'aide.
PS: Je suis en Seconde
J'ai un devoir maison présentant un problème qui est le suivant:
Si je prends le carré d'un nombre, alors il est toujours supérieur ou égal à son double moins 1
Emile pense que cet proposition est fausse et qu'elle le demontrera par un contre-exemple. Trouvez un contre exemple ou alors justifier pourquoi un contre-exemple est impossible à trouver ?
J'ai pour le moment tenté quelque chose:
J'ai énoncé une fonction: x²>2x-1
Puis j'ai développé x²-2x>-1
et factorisé x(x-2)>-1 mais c'est là que je bloque je n'arrive pas à trouver une autre façon de résoudre ce problème, merci de l'aide.
PS: Je suis en Seconde
2 Réponse
-
1. Réponse MonsieurFirdown
Bonjour
♧ On a donc :
x² ≥ 2x - 1
x² - 2x + 1 ≥ 0
(x-1)² ≥ 0
D'où
x - 1 ≥ 0
x ≥ 1
♧ Cette affirmation est Vrai
Voilà ^^ -
2. Réponse croisierfamily
x² ≥ 2x - 1 donne x² - 2x + 1 ≥ 0
( x - 1 ) ² ≥ 0
( on vient d' appliquer un produit remarquable ! )
comme un carré est toujours POSITIF ou nul, l' affirmation est bien VRAIE !
remarque : si x = 1 ; x² = 2x -1 est vérifié car 1 = 2 - 1 est vrai !