Mathématiques

Question

SVP,
Soit a(x) = (10-5x) (10+5x) - 3x (5x+10) ; b(x) = - 40x² - 30x + 100 et c(x) = (10 + 5x) (10 + 8x)
1. Montrer que a(-2) = b(-2) = c(-2) =0
2. Montrer que pour tous les membres x , on a toujours : a(x) = b(x).
3. Démontrer , en trouvant un contre exemple , que l'égalité a(x) = c(x) n'est pas toujours vérifiée.
4. A-t-on toujours : b(x) = c(x) , pour tous les membres x ?
MERCIII.

1 Réponse

  • a(x) = ( 10 - 5 x ) ( 10 + 5 x ) - 3 x ( 5 + 10) 
    a(x) = 100 - 25 x² - 15 x - 30  = - 25 x² - 15 x + 70 

    b(x) = - 40 x² - 30 x + 100 

    c(x) = ( 10 + 5 x) ( 10 + 8 x ) = 100 + 80 x + 50 x + 40 x² = 40 x² + 130 x + 100 

    a(-2) = - 25 ( -2)² - 15 ( -2) + 70
    a ( -2) = - 25 * 4 + 30 + 70 = - 100 + 100 =

    b( -2) = - 40 ( -2)² - 30 ( -2) + 100
    b ( -2) = - 40 * 4 + 60 + 100 
    b ( -2) = - 160 + 160 =
    donc a(x) = b( x) 

    a(x) = c(x) 

    - 25 x² - 15 x + 70 = 40 x² + 130 x + 100 
    si x  = 0 , a(x) = 70 et c(x) = 100 

    donc a(x) n'est pas toujours égal à c(x) 

    4) b(x) = c(x) 

    - 40 x² - 30 x + 100 = 40 x² + 130 x + 100 
    - 40 x² - 40 x² - 30 x - 130 x = 100 - 100 
    - 80 x² - 160 x = 0 
    pour x = 0 , b(x) = c(x) 

Autres questions