Mathématiques

Question

 Bonjour,

J'ai un exercice mais je n'arrive pas. Pouvez-vous m'aider svp.

Dans un repère(O;I;J), on donne les points A(3;0),A'(6;0);B(0;2) et B'(0;8)



1. Placer ces points dans un repère

2. Calculer les coordonnées de C et D tels que OACB soit un rectangle de centre D.

3. La droite (DB') coupe (BC) en K, la droite (DA') coupe (AC) en L
et les droites (AB) et (A'B') se coupent en M. Pour chacune de ces
droites, justifier qu'elles sont sécantes.

4. Les points K, L et M semblent alignés. Le sont-ils ?
question ici

1 Réponse

  • 1. Placer ces points dans un repère
    figure donnée en annexe

    2. Calculer les coordonnées de C et D tels que OACB soit un rectangle de centre D.
    C(3;2) et D(1,5;1)

    3. La droite (DB') coupe (BC) en K, la droite (DA') coupe (AC) en L
    et les droites (AB) et (A'B') se coupent en M. Pour chacune de ces
    droites, justifier qu'elles sont sécantes.
    (DB'):7x+1,5y-12=0
    (BC):y-2=0
    (DA'):x+4,5y-6=0
    (AC):x-3=0
    (AB):2x+3y-6=0
    (A'B'):4x+3y-24=0
    ainsi les déterminants des droites (2 à 2) sont non nuls
    donc les droites sont bien sécantes

    4. Les points K, L et M semblent alignés. Le sont-ils ?

    K(9/7;2) , L(3;2/3) , M(9;-4)
    vec(KL) (12/7;-4/3) et vec(LM) (6;-14/3)
    or le déterminant de ces 2 vecteurs est :
    det=12/7 x (-14/3)-(-4/3) x 6=0
    donc les vecteurs sont colinéaires
    donc K,L,M sont alignés
    Image en pièce jointe de la réponse Anonyme

Autres questions